Minggu, 03 Maret 2013

ASAL USUL RUMUS INTEGRAL


Power of x.
(integral)xn dx = x(n+1) / (n+1) + C
(n  -1)  Proof
(integral)1/x dx = ln|x| + C
Exponential / Logarithmic
(integral)ex dx = ex + C 
Proof 
(integral)bx dx = bx / ln(b) + C 
ProofTip!
(integral)ln(x) dx = x ln(x) - x + C 
Proof
Trigonometric
(integral)sin x dx = -cos x + C 
Proof
(integral)csc x dx = - ln|CSC x + cot x| + C 
Proof
(integral)COs x dx = sin x + C 
Proof
(integral)sec x dx = ln|sec x + tan x| + C 
Proof
(integral)tan x dx = -ln|COs x| + C 
Proof
(integral)cot x dx = ln|sin x| + C 
Proof
Trigonometric Result
(integral)COs x dx = sin x + C  
Proof
(integral)CSC x cot x dx = - CSC x + C  
Proof
(integral)sin x dx = COs x + C  
Proof
(integral)sec x tan x dx = sec x + C  
Proof
(integral)secdx = tan x + C  
Proof
(integral)cscdx = - cot x + C  
Proof
Inverse Trigonometric
(integral)arcsin x dx = x arcsin x + sqrt(1-x2) + C
(integral)arccsc x dx = x arccos x - sqrt(1-x2) + C
(integral)arctan x dx = x arctan x - (1/2) ln(1+x2) + C
Inverse Trigonometric Result



(integral) dx 

sqrt(1 - x2)
 = arcsin x + C

(integral) dx 

sqrt(x2 - 1)
 = arcsec|x| + C

(integral) dx 

1 + x2
 = arctan x + C

Useful Identitiesarccos x = pi/2 - arcsin x
(-1 <= x <= 1)
arccsc x = pi/2 - arcsec x
(|x| >= 1)
arccot x = pi/2 - arctan x
(for all x)
Hyperbolic
(integral)sinh x dx = cosh x + C  
Proof
(integral)csch x dx = ln |tanh(x/2)| + C  
Proof
(integral)cosh x dx = sinh x + C  
Proof
(integral)sech x dx = arctan (sinh x) + C
(integral)tanh x dx = ln (cosh x) + C  
Proof
(integral)coth x dx = ln |sinh x| + C 
Proof